Ask a Question

Prefer a chat interface with context about you and your work?

Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions

Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions

Let $\mathcal{P}=\{h_1,\dots,h_s\}\subset\mathbb{Z}[Y_1,\dots,Y_k]$, $D\geq\deg(h_i)$ for $1\leq i\leq s$, $\sigma$ bounding the bit length of the coefficients of the $h_i$'s, and let $\Phi$ be a quantifier-free $\mathcal{P}$-formula defining a convex semialgebraic set. We design an algorithm returning a rational point in $\mathcal{S}$ if and only if $\mathcal{S}\cap\mathbb{Q}\neq\emptyset$. It requires $\sigma^{\mathrm{O}(1)}D^{\mathrm{O}(k^3)}$ bit operations. …