Ask a Question

Prefer a chat interface with context about you and your work?

Ginzburg-Landau theory for the conical cycloid state in multiferroics: Applications to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CoCr</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mtext>O</mml:mtext><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>

Ginzburg-Landau theory for the conical cycloid state in multiferroics: Applications to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CoCr</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mtext>O</mml:mtext><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>

We show that the cycloidal magnetic order of a multiferroic can arise in the absence of spin and lattice anisotropies, e.g., in a cubic material, and this explains the occurrence of such a state in ${\text{CoCr}}_{2}{\text{O}}_{4}$. We discuss the case when this order coexists with ferromagnetism in a so-called ``conical …