Results on a weighted Poincaré inequality of complete manifolds
Results on a weighted Poincaré inequality of complete manifolds
We study manifolds satisfying a weighted Poincaré inequality, which was first introduced by Li and Wang. We generalized their result by relaxing the Ricci curvature bound condition only being satisfied outside a compact set and established a finitely many ends result. We also proved a vanishing result for an $L^2$ …