OSCILLATION OF ONE ORDER NEUTRAL DIFFERENTIAL EQUATION WITH IMPULSES
OSCILLATION OF ONE ORDER NEUTRAL DIFFERENTIAL EQUATION WITH IMPULSES
Explicit sufficient conditions are established for the oscillation of the one order neutral differential equations with impulsive <TEX>$(x(t)+{\sum\limits^n_{i=1}}c_ix(t-{\sigma}_i))'+px(t-{\tau})=0$</TEX>, <TEX>$t{\neq}t_{\kappa}$</TEX>, <TEX>${\Delta}(x(t_{\kappa})+{\sum\limits^n_{i=1}}c_ix(t_{\kappa}-{\sigma}_i))+p_0x(t_{\kappa}-{\tau})=0$</TEX>, <TEX>$c_i{\geq}0$</TEX>, <TEX>$i=1,2,{\ldots}n$</TEX>, <TEX>$p{\tau}$</TEX>>0, <TEX>$p_0{\tau}$</TEX>>0, <TEX>${\Delta}(x_{\kappa})=x(t^+_{\kappa})-x(t_{\kappa})$</TEX>. Explicit sufficient and necessary condition are established when <TEX>$c_i$</TEX> = 0, i = 1, 2, <TEX>${\ldots}$</TEX>, n.