Quadratic residues and class numbers
Quadratic residues and class numbers
For an odd prime $p$ let $\rho_p$ be the least odd prime ($\ne p$) which is a~quadratic residue mod $p$. Using the theorems of Heegner--Baker--Stark and Siegel--Tatuzawa on the class number $h=h(-p)$ of the imaginary quadratic number field $\mathbb{Q}(\sqrt{-p})$ it is shown that $\rho_p<\sqrt p$ unless $p\in \{3, 5, 7, …