Ask a Question

Prefer a chat interface with context about you and your work?

Topological Quantum Phase Transition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>5</mml:mn><mml:mi>d</mml:mi></mml:math>Transition Metal Oxide<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Na</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>IrO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>

Topological Quantum Phase Transition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>5</mml:mn><mml:mi>d</mml:mi></mml:math>Transition Metal Oxide<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Na</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>IrO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>

We predict a quantum phase transition from normal to topological insulators in the 5$d$ transition metal oxide Na$_2$IrO$_3$, where the transition can be driven by the change of the long-range hopping and trigonal crystal field terms. From the first-principles-derived tight-binding Hamiltonian we determine the phase boundary through the parity analysis. …