Prefer a chat interface with context about you and your work?
Two-point functions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>SU</mml:mi><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo><mml:mn /></mml:math>Polyakov loops near<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>
We discuss the behavior of two point functions for Polyakov loops in an $\mathrm{SU}(3)$ gauge theory about the critical temperature ${T}_{c}.$ From a $Z(3)$ model, in mean field theory we obtain a prediction for the ratio of masses at ${T}_{c},$ extracted from correlation functions for the imaginary and real parts …