Ask a Question

Prefer a chat interface with context about you and your work?

Anisotropic superconducting properties of single-crystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>FeSe</mml:mtext></mml:mrow><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mtext>Te</mml:mtext></mml:mrow><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

Anisotropic superconducting properties of single-crystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>FeSe</mml:mtext></mml:mrow><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mtext>Te</mml:mtext></mml:mrow><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

Iron-chalcogenide single crystals with the nominal composition ${\text{FeSe}}_{0.5}{\text{Te}}_{0.5}$ and a transition temperature of ${T}_{c}\ensuremath{\simeq}14.6\text{ }\text{K}$ were synthesized by the Bridgman method. The structural and anisotropic superconducting properties of those crystals were investigated by means of single crystal x-ray and neutron powder diffraction, superconducting quantum interference device and torque magnetometry, and …