Ask a Question

Prefer a chat interface with context about you and your work?

Strongly Anisotropic Electronic Transport at Landau Level Filling Factor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">ν</mml:mi><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>9</mml:mn><mml:mn /><mml:mi>/</mml:mi><mml:mn>2</mml:mn></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">ν</mml:mi><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>5</mml:mn><mml:mn /><…

Strongly Anisotropic Electronic Transport at Landau Level Filling Factor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">ν</mml:mi><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>9</mml:mn><mml:mn /><mml:mi>/</mml:mi><mml:mn>2</mml:mn></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">ν</mml:mi><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>5</mml:mn><mml:mn /><…

We have investigated the influence of an increasing in-plane magnetic field on the states of half filling of Landau levels ( $\ensuremath{\nu}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}11/2$, 9/2, 7/2, and 5/2) of a two-dimensional electron system. In the electrically anisotropic phase at $\ensuremath{\nu}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}9/2$ and 11/2 an in-plane magnetic field of $\ensuremath{\sim}1--2\mathrm{T}$ overcomes its initial pinning …