Orbits in unimodular Hermitian lattices
Orbits in unimodular Hermitian lattices
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a unimodular indefinite hermitian lattice over the integers <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German o"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">o</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathfrak {o}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of an algebraic number field, and <inline-formula content-type="math/mathml"> <mml:math …