Sur La Saucisse De Wiener et les Points Multiples du Mouvement Brownien
Sur La Saucisse De Wiener et les Points Multiples du Mouvement Brownien
Let $B$ be a Brownian motion with values in Euclidean space $R^d$, where $d = 2 \text{or} 3$. The Wiener sausage with radius $\varepsilon$ associated with $B$ is defined as the set of points whose distance from the path is less than $\varepsilon$. Let $B'$ be another Brownian motion with …