Opening up and control of spectral gaps of the Laplacian in periodic domains
Opening up and control of spectral gaps of the Laplacian in periodic domains
The main result of this work is as follows: for arbitrary pairwise disjoint finite intervals $(\alpha_j,\beta_j)\subset[0,\infty)$, $j=1,\dots,m$ and for arbitrary $n\geq 2$ we construct the family of periodic non-compact domains $\{\Omega^\varepsilon\subset\mathbb{R}^n\}_{\varepsilon>0}$ such that the spectrum of the Neumann Laplacian in $\Omega^\varepsilon$ has at least $m$ gaps when $\varepsilon$ is small …