GLOBAL BRANCH OF SOLUTIONS FOR NON-LINEAR SCHRÖDINGER EQUATIONS WITH DEEPENING POTENTIAL WELL
GLOBAL BRANCH OF SOLUTIONS FOR NON-LINEAR SCHRÖDINGER EQUATIONS WITH DEEPENING POTENTIAL WELL
We consider the stationary non-linear Schrödinger equation\begin{equation*}\Delta u + \{1 + \lambda g(x)\} u = f(u)\mbox{with}u \in H^{1} (\mathbb{R}^{N}), u \not\equiv 0,\end{equation*} where $\lambda >0$ and the functions $f$ and $g$ are such that\begin{equation*} \lim_{s \rightarrow 0}\frac{f(s)}{s} = 0 \mbox{and} 1 < \alpha + 1 = \lim _{|s| \rightarrow \infty}\frac{f(s)}{s} …