Ask a Question

Prefer a chat interface with context about you and your work?

Index and total curvature of surfaces with constant mean curvature

Index and total curvature of surfaces with constant mean curvature

We prove an analogue, for surfaces with constant mean curvature in hyperbolic space, of a theorem of Fischer-Colbrie and Gulliver about minimal surfaces in Euclidean space. That is, for a complete surface <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>M</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{M^2}</mml:annotation> </mml:semantics> …