Motion in a Gaussian incompressible flow
Motion in a Gaussian incompressible flow
We prove that the solution of a system of random ordinary differential equations $d\mathbf{X}(t)/dt = \mathbf{V}(t, \mathbf{X}(t))$ with diffusive scaling, $\mathbf{X}_{\varepsilon}(t) = \varepsilon \mathbf{X}(t/ \varepsilon^2)$, converges weakly to a Brownian motion when $\varepsilon \downarrow 0$. We assume that $\mathbf{V}(t, \mathbf{x}), t \epsilon R, \mathbf{x} \epsilon R^d$ is a d-dimensional, random, …