Ask a Question

Prefer a chat interface with context about you and your work?

Low-Energy Sector of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">S</mml:mi><mml:mi mathvariant="italic" /><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>1</mml:mn><mml:mn /><mml:mi>/</mml:mi><mml:mn>2</mml:mn></mml:math>Kagome Antiferromagnet

Low-Energy Sector of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">S</mml:mi><mml:mi mathvariant="italic" /><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>1</mml:mn><mml:mn /><mml:mi>/</mml:mi><mml:mn>2</mml:mn></mml:math>Kagome Antiferromagnet

Starting from a modified version of the $S\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1/2$ Kagome antiferromagnet to emphasize the role of elementary triangles, an effective Hamiltonian involving spin and chirality variables is derived. A mean-field decoupling that retains the quantum nature of these variables is shown to yield a Hamiltonian that can be solved exactly, leading …