On the monodromy at isolated singularities of weighted homogeneous polynomials
On the monodromy at isolated singularities of weighted homogeneous polynomials
Assume $f:{{\mathbf {C}}^m} \to {\mathbf {C}}$ is a weighted homogeneous polynomial with isolated singularity, and define $\phi :{S^{2m - 1}} - {f^{ - 1}}(0) \to {S^1}$ by $\phi (\overrightarrow z ) = f(\overrightarrow z ) / |f(\overrightarrow z )|$. If the monomials of $f$ are algebraically independent, then the closure …