On Lacunary Mean Ideal Convergence in Generalized Random<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math>-Normed Spaces
On Lacunary Mean Ideal Convergence in Generalized Random<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math>-Normed Spaces
An ideal<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>I</mml:mi></mml:mrow></mml:math>is a hereditary and additive family of subsets of positive integers<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>ℕ</mml:mi></mml:mrow></mml:math>. In this paper, we will introduce the concept of generalized random<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math>-normed space as an extension of random<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math>-normed space. Also, we study the concept of lacunary mean (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>)-ideal convergence …