Differential equations on complex projective hypersurfaces of low dimension
Differential equations on complex projective hypersurfaces of low dimension
Let $n=2,3,4,5$ and let $X$ be a smooth complex projective hypersurface of $\mathbb P^{n+1}$. In this paper we find an effective lower bound for the degree of $X$, such that every holomorphic entire curve in $X$ must satisfy an algebraic differential equation of order $k=n=\dim X$, and also similar bounds …