Ask a Question

Prefer a chat interface with context about you and your work?

Uncommonly high upper critical field of the pyrochlore superconductor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">K</mml:mi><mml:msub><mml:mi mathvariant="normal">Os</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>below the enhanced paramagnetic limit

Uncommonly high upper critical field of the pyrochlore superconductor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">K</mml:mi><mml:msub><mml:mi mathvariant="normal">Os</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>below the enhanced paramagnetic limit

The entire temperature dependence of the upper critical field ${H}_{\mathrm{c}2}$ in the $\ensuremath{\beta}$-pyrochlore $\mathrm{K}{\mathrm{Os}}_{2}{\mathrm{O}}_{6}$ is obtained from high-field resistivity and magnetic measurements. Both techniques identically give ${H}_{\mathrm{c}2}(T\ensuremath{\simeq}0\phantom{\rule{0.3em}{0ex}}\mathrm{K})$ not only surprisingly high $(\ensuremath{\sim}33\phantom{\rule{0.3em}{0ex}}\mathrm{T})$, but also the approach to it is unusually temperature linear all the way below ${T}_{\mathrm{c}}(=9.6\phantom{\rule{0.3em}{0ex}}\mathrm{K})$. We show that, …