Determination of bounds for the solutions to those binary Diophantine equations that satisfy the hypotheses of Runge’s theorem
Determination of bounds for the solutions to those binary Diophantine equations that satisfy the hypotheses of Runge’s theorem
In 1887 Runge [<bold>13</bold>] proved that a binary Diophantine equation <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F left-parenthesis x comma y right-parenthesis equals 0"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">F(x,y) = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> …