Ask a Question

Prefer a chat interface with context about you and your work?

Divergence of the Magnetic Grüneisen Ratio at the Field-Induced Quantum Critical Point in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>YbRh</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Si</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>

Divergence of the Magnetic Grüneisen Ratio at the Field-Induced Quantum Critical Point in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>YbRh</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Si</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>

The heavy-fermion metal ${\mathrm{YbRh}}_{2}{\mathrm{Si}}_{2}$ is studied by low-temperature magnetization $M(T)$ and specific-heat $C(T)$ measurements at magnetic fields close to the quantum critical point (${H}_{c}=0.06\text{ }\text{ }\mathrm{T}$, $H\ensuremath{\perp}c$). Upon approaching the instability, $dM/dT$ is more singular than $C(T)$, leading to a divergence of the magnetic Gr\"uneisen ratio ${\ensuremath{\Gamma}}_{\mathrm{mag}}=\ensuremath{-}(dM/dT)/C$. Within the Fermi-liquid …