Ask a Question

Prefer a chat interface with context about you and your work?

Quasiparticle band structures and optical properties of strained monolayer MoS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>and WS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>

Quasiparticle band structures and optical properties of strained monolayer MoS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>and WS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>

The quasiparticle (QP) band structures of both strainless and strained monolayer MoS${}_{2}$ are investigated using more accurate many-body perturbation $\mathit{GW}$ theory and maximally localized Wannier functions (MLWFs) approach. By solving the Bethe-Salpeter equation (BSE) including excitonic effects on top of the partially self-consistent $\mathit{GW}$${}_{0}$ (sc$\mathit{GW}$${}_{0}$) calculation, the predicted optical gap …