Distance geometry in quasihypermetric spaces. III
Distance geometry in quasihypermetric spaces. III
Abstract Let ( X , d ) be a compact metric space and let \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal {M}(X)$\end{document} denote the space of all finite signed Borel measures on X . Define \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I :\mathcal {M}(X)\longrightarrow \mathbb {R}$\end{document} by and set $M(X) = \sup I(\mu ),$ where μ ranges over the collection of signed …