Ask a Question

Prefer a chat interface with context about you and your work?

Memory effects in fractional Brownian motion with Hurst exponent<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>H</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:math>

Memory effects in fractional Brownian motion with Hurst exponent<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>H</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:math>

We study the regression to the origin of a walker driven by dynamically generated fractional Brownian motion (FBM) and we prove that when the FBM scaling, i.e., the Hurst exponent H<1/3 , the emerging inverse power law is characterized by a power index that is a compelling signature of the …