On the oscillation of almost-periodic Sturm-Liouville operators with an arbitrary coupling constant
On the oscillation of almost-periodic Sturm-Liouville operators with an arbitrary coupling constant
In this paper we characterize those (Bohr) almost periodic functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding="application/x-tex">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {R}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which the Sturm-Liouville …