Prefer a chat interface with context about you and your work?
Matrix model for deconfinement in a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo mathvariant="bold" stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo mathvariant="bold" stretchy="false">)</mml:mo></mml:math>gauge theory in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>2</mml:mn><mml:mo mathvariant="bold">+</mml:mo><mml:mn>1</mml:mn></mml:math>dimensions
We use matrix models to characterize deconfinement at a nonzero temperature $T$ for an $SU(2)$ gauge theory in three spacetime dimensions. At one-loop order, the potential for a constant vector potential ${A}_{0}$ is $\ensuremath{\sim}{T}^{3}$ times a trilogarithm function of ${A}_{0}/T$. In addition, we add various nonperturbative terms to model deconfinement. …