Ask a Question

Prefer a chat interface with context about you and your work?

The Largest Eigenvalue of Sparse Random Graphs

The Largest Eigenvalue of Sparse Random Graphs

We prove that, for all values of the edge probability $p(n)$, the largest eigenvalue of the random graph $G(n, p)$ satisfies almost surely $\lambda_1(G)=(1+o(1))\max\{\sqrt{\Delta}, np\}$, where Δ is the maximum degree of $G$, and the o(1) term tends to zero as $\max\{\sqrt{\Delta}, np\}$ tends to infinity.