Codimension 1 orbits and semi-invariants for the representations of an equioriented graph of type ๐ท_{๐}
Codimension 1 orbits and semi-invariants for the representations of an equioriented graph of type ๐ท_{๐}
We consider the Dynkin diagram <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>D</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{D_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equioriented and the variety <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H o m left-parenthesis upper V 1 comma upper V 3 right-parenthesis times normal upper โฆ