Ask a Question

Prefer a chat interface with context about you and your work?

Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus

Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus

We study the asymptotic behavior of the sequence<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi mathvariant="normal" /><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:msubsup><mml:mo stretchy="false">∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msubsup><mml:mrow><mml:mi>K</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:msup><mml:msubsup><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msubsup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msubsup><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mo>+</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msubsup><mml:mo>-</mml:mo><mml:msubsup><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msubsup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:math>as<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math>tends to infinity, where<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:msup><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msup></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:msup><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msup></mml:mrow></mml:math>are two independent subfractional Brownian motions with indices<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, respectively.<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mrow><mml:mi>K</mml:mi></mml:mrow></mml:math>is …