The Euler scheme for Lévy driven stochastic differential equations
The Euler scheme for Lévy driven stochastic differential equations
In relation with Monte Carlo methods to solve some integro-differential equations, we study the approximation problem of $\mathbb{E}g(X_T)$ by $\mathbb{E}g(\overline{X}_T^n)$, where $(X_t, 0 \leq t \leq T)$ is the solution of a stochastic differential equation governed by a Lévy process $(Z_t), (\overline{X}_t^n)$ is defined by the Euler discretization scheme with …