Global Period-Doubling Bifurcation of Quadratic Fractional Second Order Difference Equation
Global Period-Doubling Bifurcation of Quadratic Fractional Second Order Difference Equation
We investigate the local stability and the global asymptotic stability of the difference equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mfenced separators="|"><mml:mrow><mml:mi>α</mml:mi><mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>+</mml:mo><mml:mi>β</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>γ</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:mfenced><mml:mo>/</mml:mo><mml:mfenced separators="|"><mml:mrow><mml:mi>A</mml:mi><mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>+</mml:mo><mml:mi>B</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>C</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>0,1</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo></mml:math>with nonnegative parameters and initial conditions such that<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>A</mml:mi><mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>+</mml:mo><mml:mi>B</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>C</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>></mml:mo><mml:mn>0</mml:mn></mml:math>, for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>0</mml:mn></mml:math>. We obtain the local stability of the equilibrium for all values of parameters and give some global …