Ask a Question

Prefer a chat interface with context about you and your work?

Splitting theorem for homology of 𝐺𝐿(𝑅)

Splitting theorem for homology of 𝐺𝐿(𝑅)

It is proved that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace upper M Subscript n Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\left \{ {{M_n}} \right \}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a stable system of coefficients for <inline-formula content-type="math/mathml"> <mml:math …