$3$-Designs from PGL$(2,q)$
$3$-Designs from PGL$(2,q)$
The group PGL$(2,q)$, $q=p^n$, $p$ an odd prime, is $3$-transitive on the projective line and therefore it can be used to construct $3$-designs. In this paper, we determine the sizes of orbits from the action of PGL$(2,q)$ on the $k$-subsets of the projective line when $k$ is not congruent to …