A proof of the Grünbaum conjecture
A proof of the Grünbaum conjecture
Let $V$ be an $n$-dimensional real Banach space and let $\lambda(V)$ denote its absolute projection constant. For any $N \in \Bbb{N}$ with $ N \geq n$ define $$\eqalign{ \lambda_n^N &= \sup\{ \lambda(V): \dim(V)= n,\, V \subset l_{\infty}^{(N)} \},\cr \la