Ask a Question

Prefer a chat interface with context about you and your work?

On the long time behavior of second order differential equations with asymptotically small dissipation

On the long time behavior of second order differential equations with asymptotically small dissipation

We investigate the asymptotic properties as $t\to \infty$ of the following differential equation in the Hilbert space $H$: \begin{equation*}(\mathcal {S})\qquad \qquad \qquad \ddot {x}(t)+a(t)\dot {x}(t)+ \nabla G(x(t))=0, \quad t\geq 0,\qquad \qquad \qquad \qquad \quad \end{equation*} where the map $a:\mathbb {R}_+\to \mathbb {R}_+$ is nonincreasing and the potential $G:H\to \mathbb {R}$ …