Ask a Question

Prefer a chat interface with context about you and your work?

Optimal renormalization-group improvement of the perturbative series for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>โˆ’</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>annihilation cross section

Optimal renormalization-group improvement of the perturbative series for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>โˆ’</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>annihilation cross section

Using renormalization-group methods, we derive differential equations for the all-orders summation of logarithmic corrections to the QCD series for R(s) = sigma(e^+ e^- --> hadrons)/sigma(e^+ e^- --> mu^+ mu^-), as obtained from the imaginary part of the purely-perturbative vector-current correlation function. We present explicit solutions for the summation of leading โ€ฆ