Ask a Question

Prefer a chat interface with context about you and your work?

Survival Probability of a Gaussian Non-Markovian Process: Application to the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">T</mml:mi><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>0</mml:mn><mml:mn /></mml:math>Dynamics of the Ising Model

Survival Probability of a Gaussian Non-Markovian Process: Application to the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">T</mml:mi><mml:mspace /><mml:mo>=</mml:mo><mml:mspace /><mml:mn>0</mml:mn><mml:mn /></mml:math>Dynamics of the Ising Model

We study the decay of the probability for a non-Markovian stationary Gaussian walker not to cross the origin up to time $t$. This result is then used to evaluate the fraction of spins that do not flip up to time $t$ in the zero temperature Monte Carlo spin flip dynamics …