Ask a Question

Prefer a chat interface with context about you and your work?

Smooth Approximation of Lipschitz Functions on Finsler Manifolds

Smooth Approximation of Lipschitz Functions on Finsler Manifolds

We study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:mi>M</mml:mi><mml:mo>→</mml:mo><mml:mi>ℝ</mml:mi></mml:math>defined on a connected, second countable Finsler manifold<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math>, for each positive continuous function<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>ε</mml:mi><mml:mo>:</mml:mo><mml:mi>M</mml:mi><mml:mo>→</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">0</mml:mn><mml:mo>,</mml:mo><mml:mi mathvariant="normal">∞</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>and each<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>r</mml:mi><mml:mo>&gt;</mml:mo><mml:mn …