A maximum principle for mean-curvature type elliptic inequalities
A maximum principle for mean-curvature type elliptic inequalities
Consider the divergence structure elliptic inequality \tag{1} \mathrm{div}\{\boldsymbol A(x,u,Du)\} + B(x,u,Du) \ge 0 in a bounded domain \Omega\subset \mathbb R^n . Here \boldsymbol A(x,z,\boldsymbol \xi): \,K \to \mathbb R^n, \qquad B(x,z,\boldsymbol \xi): K \to \mathbb R, \qquad K = \Omega \times \mathbb R^+ \times \mathbb R^n, and \boldsymbol A , …