Ask a Question

Prefer a chat interface with context about you and your work?

Continuous g-Frame in Hilbert<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>C</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math>-Modules

Continuous g-Frame in Hilbert<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>C</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math>-Modules

We give a generalization of g‐frame in Hilbert C ∗ ‐modules that was introduced by Khosravies then investigated some properties of it by Xiao and Zeng. This generalization is a natural generalization of continuous and discrete g‐frames and frame in Hilbert space too. We characterize continuous g‐frame g‐Riesz in Hilbert …