Ask a Question

Prefer a chat interface with context about you and your work?

Energy gap, penetration depth, and surface resistance of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MgB</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>thin films determined by microwave resonator measurements

Energy gap, penetration depth, and surface resistance of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MgB</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>thin films determined by microwave resonator measurements

We have measured the temperature dependence of the microwave surface impedance ${Z}_{s}{=R}_{s}+i\ensuremath{\omega}{\ensuremath{\mu}}_{0}\ensuremath{\lambda}$ of two c-axis oriented ${\mathrm{MgB}}_{2}$ films employing dielectric resonator techniques. The temperature dependence of the magnetic-field penetration depth \ensuremath{\lambda} determined by a sapphire dielectric resonator at 17.9 GHz can be well fitted from 5 K close to ${T}_{c}$ …