Ask a Question

Prefer a chat interface with context about you and your work?

A sharp weighted L2-estimate for the solution to the time-dependent Schrödinger equation

A sharp weighted L2-estimate for the solution to the time-dependent Schrödinger equation

For Ξ∈Rn, t∈R and f∈S(Rn) define $\left( {S^2 f} \right)\left( t \right)\left( \xi \right) = \exp \left( {it\left| \xi \right|^2 } \right)\hat f\left( \xi \right)$ . We determine the optimal regularity s0 such that $\int_{R^n } {\left\| {(S^2 f)[x]} \right\|_{L^2 (R)}^2 \frac{{dx}}{{(1 + |x|)^b }} \leqslant C\left\| f \right\|_{H^s (R^n …