PFA implies all automorphisms are trivial
PFA implies all automorphisms are trivial
It is shown that PFA implies that all automorphisms of the Boolean algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper P left-parenthesis omega right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">P</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {P}\left ( \omega \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>/Finite are …