Weak Convergence to Extremal Processes
Weak Convergence to Extremal Processes
$\{X_n, n\geqq 1\}$ are i.i.d. rv's with df $F$. Set $M_n = \max\{X_1, \cdots, X_n\}$. As a basic assumption, suppose normalizing constants $a_n > 0, b_n, n \geqq 1$ exist such that $\lim_{n\rightarrow\infty} P\lbrack M_n \leqq a_n x + b_n \rbrack = G(x)$, nondegenerate. Define the random function $Y_n(t) = …