Ask a Question

Prefer a chat interface with context about you and your work?

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>pp</mml:mi><mml:mo>→</mml:mo><mml:mi>pp</mml:mi><mml:mrow><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>reaction near threshold: A chiral power counting approach

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>pp</mml:mi><mml:mo>→</mml:mo><mml:mi>pp</mml:mi><mml:mrow><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>reaction near threshold: A chiral power counting approach

We use power-counting arguments as an organizing principle to apply chiral perturbation theory, including an explicit $\ensuremath{\Delta}$,to the $\mathrm{pp}\ensuremath{\rightarrow}\mathrm{pp}{\ensuremath{\pi}}^{0}$ reaction near threshold. There are two lowest-order leading mechanisms expected to contribute to the amplitude with similar magnitudes: an impulse term, and a $\ensuremath{\Delta}$-excitation mechanism. We examine formally subleading but potentially …