Ask a Question

Prefer a chat interface with context about you and your work?

Fixed point theorem for nonexpansive semigroup on Banach space

Fixed point theorem for nonexpansive semigroup on Banach space

Let <italic>C</italic> be a nonempty closed convex subset of a uniformly convex Banach space, and let <italic>S</italic> be a semitopological semigroup such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="RUC left-parenthesis upper S right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>RUC</mml:mtext> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {RUC}}(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> …