Local splitting theorems for Riemannian manifolds
Local splitting theorems for Riemannian manifolds
In this paper we establish two local versions of the Cheeger-Gromoll Splitting Theorem. We show that if a complete Riemannian manifold <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has nonnegative Ricci curvature outside a compact set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> …