Ask a Question

Prefer a chat interface with context about you and your work?

All orders analysis of the three dimensional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi><mml:msup><mml:mi>P</mml:mi><mml:mrow><mml:mi>N</mml:mi><mml:mo>โˆ’</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>model in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>N</mml:mi></mml:math>expansion

All orders analysis of the three dimensional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi><mml:msup><mml:mi>P</mml:mi><mml:mrow><mml:mi>N</mml:mi><mml:mo>โˆ’</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>model in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>N</mml:mi></mml:math>expansion

The renormalizability of the three dimensional supersymmetric $C{P}^{N\ensuremath{-}1}$ model is discussed in the $1/N$-expansion method, to all orders of $1/N$. The model has $N$ copies of the dynamical field and the amplitudes are expanded in powers of $1/N$. In order to see the effects of supersymmetry explicitly, Feynman rules for โ€ฆ