Ask a Question

Prefer a chat interface with context about you and your work?

Rings whose cyclic modules are injective or projective

Rings whose cyclic modules are injective or projective

The object of this paper is to prove <bold>Theorem</bold>. <italic>For a ring</italic> <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <italic>the following are equivalent</italic>: (i) <italic>Every cyclic right</italic> <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-<italic>module is injective or projective</italic>. …